The Data Analytics Blog

Our news and views relating to Data Analytics, Big Data, Machine Learning, and the world of Credit.

All Posts

4 Cool Ways Data Analytics Is Changing The World Of Sports

November 25, 2015 at 10:56 AM

Last month we used predictive analytics and machine learning to predict the results of the Rugby World Cup, “out-moneyballing” the bookies themselves and placing us at the top 00.32% of humans on sports prediction site, SuperBru. Now that the dust has settled a bit after that fun initiative, I thought I’d look into other ways data analytics is being used in the sports world today. There are indeed many ways, but for the sake of brevity, let’s look at four of the more interesting ways that data analytics is changing the world of sports.

1. Data Analytics to improve Player Performance

Our belief is that with the right data the right information can be derived that enables business leaders to make decisions that enhance business performance. In sports, more and more of that “right” data is becoming available thanks to wearable technology and RFID tags being worn by players.

Data collected, such as players’ vital stats and movements in training and in play on game day are being analysed to enhance player performance and match strategy. Coaches can now have access to information such as how fast players are running, the distance they are covering in a game,  and their levels of fatigue or dehydration in real-time and after a match.  

This information is enabling coaches to identify weaker or stronger players, their physical state, and supporting their decisions when it comes to whom to replace during a match or whom to keep on the bench. And by studying patterns of play and player movements, coaches can reconfigure play strategy to make use of each player’s strengths and offset their weaknesses to improve overall team performance.  Over time, coaches can study the impact of data-driven decisions and strategies on overall player and team performance by analysing the change in player data.

However, not only do coaches benefit, but so do players and fans. Real-time access to players’ vital stats is helping players by notifying coaches of the risk of dehydration, exhaustion, or injury. For fans, information such as a player’s heart rate and how fast a player is running towards a goal compared to those running after him can be shared on screen to enhance the spectator experience.

Watch our interview with CNBC Africa where Principa Data Scientist Johan van Biljoen gives some insight into how we used 20 years of Rugby data to make our 2015 Rugby World Cup predictions.

 2. Predictive Analytics to predict Player Value

By analysing past behaviour of individuals and comparing that behaviour with aggregated behaviour of similar individuals, predictive analytics is able to provide fairly accurate predictions of future behaviour – regardless of whether it is the lifetime value of a customer or of a rugby or football player. In sports, recruiters or sports managers and coaches are using predictive analytics to determine which players to recruit or replace and how much to pay for them.

Analysis of a player’s performance data and comparison to data from similar players enables coaches or recruiters to determine the future performance of a player and thereby determine that player’s future value and the price they are willing to pay for that player. With player salaries in some sports being so high nowadays, recruitment is seen as an investment, so predictive analytics is being used to minimise risk and increase ROI.

3. Predicting an opponent’s next move

When it comes to sports, speed is of the essence. And the ability to anticipate an opponent’s next move and respond effectively is reliant on the speed at which the information is delivered to the player. Although still early days, predictive analytics has proven able to predict what a baseball pitcher is going to throw with a 74.5% degree of accuracy based on who is at bat and the scenario on the field.

As much as we like to think we are unique, what data analytics has shown in terms of human behaviour is that there are patterns and trends in our behaviour, and as random as a play may seem in a match, chances are that that play has been done before and there are stats to prove it and stats that can be used to predict it again.  The challenge is feeding that information through to the player on the field in time.

 4. Changing match Strategy

Use of data analytics enables businesses to develop strategies that optimise business performance. So, to what extent is data analytics changing strategy in sports?

In baseball, analytics is changing match strategy and a team’s elective choices, or the options players have that opponents have little or no chance of preventing, e.g. in baseball, the intentional walk or the attempt to steal base. These optional plays in baseball have shown through analytics to forfeit too much chance of a multi-run inning under most circumstances. As a result, the number of attempts to steal base per team per game in Major League Baseball fell by 30% from 1993 to 2013, the number of sacrifice hits also fell by 30 % and the number of intentional walks by 36%.

Everyone benefits

In summary, analytics benefits everyone in sports. Recruiters and coaches can use it to determine a player’s future performance, enabling them to determine whether to recruit or trade a player and – in some cases – how much to pay for the player.

Coaches use analytics to gain insights into performance that will enhance training and match strategy, and improve overall team performance. Fans gain a better spectator experience as player performance stats are shared with them add to the excitement during matches.

Players benefit from data insights that arm their coaches with the information that will lower the risk of dehydration, exhaustion, injury, and enhance overall performance.  And finally, of course, your bookies and people betting on sports, since gut-feel and experience at setting odds for a particular event are not as powerful as using objective data – as we were able to show during our “Man vs. Machine-Learning” initiative in which we used predictive analytics to predict with 91% accuracy the results of all of the 2015 Rugby World Cup matches

Is more information always a good thing?

Data analytics is indeed changing sports, but the challenge is always in deciding how much we allow technology to change it.  

What we have begun to see is a shift from a reliance on anecdotal experience and gut-feel from players and coaches to a reliance on data science to enhance decision-making in strategy on and off the field. Ultimately, this sounds like a good thing.

However, how soon before we see players kitted out with receivers in their helmets that tell them their opponent’s next move? How will this impact the spirit of the game? Will it be both distracting and decrease the degree of autonomous decision-making of the player? Will the performance of a team be based on who has the strongest and most skilled players or who is best able to interpret data and implement data-driven decisions? Only time will tell. For now, data analytics provides insights and calls the odds, but the sporting field still provides the arena for exceptional players to astound and amaze.

predictive analytics guide

 Image credit: www.principa.co.za

Julian Diaz
Julian Diaz
Julian Diaz was Head of Marketing for Principa until 2017, after which he became Head of Marketing for Honeybee CRM. American born and raised, Julian has worked in the IT industry for over 20 years. Having begun his career at a major software company in Germany, Julian made the move to South Africa in 1998 when he joined Dimension Data and later MWEB (leading South African ISP). Since then, Julian has helped launch various South African technology brands into international markets, including Principa.

Latest Posts

[Slideshare] How To Make Your Business Data Work For You

Common barriers to success: Skills shortage: data scientists are in high demand and in low supply. Companies lack the skills to develop advanced data analytics or machine learning applications. Cost: recruiting and building up or training a team, as well as infrastructure costs are immense. Inefficiency and low ROI on: acquisition campaigns; re-activation and retention campaigns; outbound sales calls and debt collection. Resulting in: No or ineffective use of data. High cost to get insights from data. Low returns from campaigns. What’s the alternative? Machine Learning as a Service (MLaaS): removes infrastructure skills and requirements for machine learning, allowing you to begin benefiting from machine learning quickly with little investment. Subscription based pricing, allowing you to benefit using machine learning while minimising your set-up costs and seeing returns sooner. Answers as a Service: Use historic data and machine learning to allow answers to increase in accuracy with time. MLaaS with predictive models pre-developed to answers specific questions: Genius Call Connect: What is the best time and number to call customers? Genius Customer Growth: Which customers are most likely to respond to cross-sell? Genius Re-activation: Which dormant customers are worth re-activating? Genius Customer Retention: Which customers are most likely to churn? Genius Leads: Which contacts are likely to respond to my campaign? Genius Risk Classifier: Which debtors are most likely to pay or roll? Benefits of Genius: Quick and cost-effective ability to leverage machine learning: Minimal set-up time Minimal involvement from IT Subscription based service Looking to make your data work for your business? Read more on Genius to see how it can help your business succeed. 

5 Must-Join Facebook Pages For Data Science, Machine Learning And Artificial Intelligence In 2019

While LinkedIn has traditionally been thought of as the business or work focussed social platform, Facebook has been making headway into gaining market share in the space as well. With company pages and groups, Facebook is catering to every interest and aspiration that people might have – and combining that with their social interactions and news sources. Facebook aims to give users a one-stop-shop experience, and it’s very good at doing it.

Our 2018 Customer Acquisition And Engagement Blog Roundup

Our final roundup this year covers two of our main topics: customer acquisition and customer engagement. We’ve not covered these topics in depth this year, and so decided to combine these two to provide a roundup of the best of both.