The Data Analytics Blog

Our news and views relating to Data Analytics, Big Data, Machine Learning, and the world of Credit.

All Posts

A Quick Primer On Machine Learning

November 30, 2017 at 11:34 AM

We've written many blog posts on the topic of Machine Learning and how it's improving everything from fraud prevention, direct marketing in retail and the customer experience in call centres to getting us to make more impulse purchases online and making holiday and business travel more enjoyable. It's with good reason we've given Machine Learning so much focus on our blog: it is a driving force in what the founder of the World Economic Forum - Klaus Schwab - is calling the Fourth Industrial Revolution.

In this blog post we answer some frequently asked questions about Machine Learning, starting with what it is and how it relates to Artificial Intelligence.

What is Machine Learning?

Rather than redefine, let's just quote Wikipedia's definition of Machine Learning which perhaps best explains it: "Machine learning is a subfield of computer science that evolved from the study of pattern recognition and computational learning theory in artificial intelligence. In 1959, Arthur Samuel defined machine learning as a 'Field of study that gives computers the ability to learn without being explicitly programmed'."

Simply put: Machine Learning is the use of algorithms to teaching computers to learn and teach themselves by trial and error through the using algorithms and computational power to process vast amounts of data and automatically find patternsand crunching of data 

In the past, static predictive models were carefully crafted from off-line data.  However, with the faster computing power and the plethora of analytical toolsets that are available today, the analytical model building can, to a large extent, be automated. Using algorithms that iteratively learn from data, machine learning allows computers to find hidden insights without being explicitly programmed where to look.

How does Machine Learning relate to Artificial Intelligence?

When we talk about Artificial Intelligence, we are referring to computational systems that behave like a human – i.e. they can understand the written and spoken language, they can converse and interact “like a human”, they can process complex concepts like sarcasm and humour. In developing this computational system, the computer needs to learn, a lot, and this is where Machine Learning comes in. Machine Learning is therefore a fundamental branch of Artificial Intelligence. 

How does Machine Learning relate to Predictive Analytics?

Although most applications involve the requirement to predict something (like a response, a fraudulent application, an attrition account), there is a tranche of Machine Learning that does not predict anything specific.  Customer segmentation is a good example, where one looks at the customer base and the requirement is to group the accounts into homogenous clusters, without pointing to any specific target variable.   Anything that involves the prediction of something can be considered to be under the wider Predictive Analytics banner. 

There are two types of predictive Machine Learning: static (or batch) and dynamic (or incremental). The more stable and trusted approach would be to manually extract the relevant data, train the models with care, validate and then implement the models. With the computing systems and algorithms that are available today, full dynamic Machine Learning is possible which allows for the retraining process to be carried out automatically, with little or no human intervention. A good example of this is iPhone’s Siri which learns the lifestyle patterns of the user and automatically adjusts its recommendations accordingly. For most Machine Learning projects within the financial services industry, we do not advocate this black box approach, but rather the development of stable and explainable predictive models.  Dynamic Machine learning algorithms can then be applied on top of this solid foundation in order to bring in more recent patterns and trends, further lifting the performance of the predictive analytics system.

Why has machine learning become such a hot topic?

The reason for the increasing interest is due to the significant increase in data that is now available, which makes machine learning more relevant, accurate and more effective for more businesses than ever before.  Machine Learning automates decisions by analysing large and diverse datasets at lightening speeds, predicting what would lead to a positive outcome and making or taking the recommended action. The accuracy of machine learning depends on the amount and the reliability of the available data. With the data deluge happening now thanks to combination of smart phones, the Internet of Things, the Internet, RFID technology and social media there is now an unprecedented amount of data being generated every second of the day for machine learning algorithms to analyse, search for and recognise patterns and trends in the data, and to then output a decision or recommended action.

What are the potential benefits of creating machines that can be programmed to learn?

Machine Learning automates decisions in a continuous improvement cycle. And machines automate actions. The combination of both greatly reduces the need for human intervention for a process to be completed. When we remove the reliance on human intervention we tend to achieve faster response times, a reduction in cost and a reduction in human error or bias for any process – from the granting of a loan to the landing of a plane. Some examples of how machine learning is being used are to instantly identify fraudulent behaviour on an account as it happens and automatically sending an alert; flagging customers who are most likely to unsubscribe or leave a business for a competitor based on real-time analysis of customer behaviour and transactional data and then take appropriate action (or not as the case may be); adjust pricing on thousands of items at once based on availability and demand; and making real-time recommendations of products or services based on a person’s purchase behaviour as they shop or complete a purchase. Decisions based on machine learning get better or more accurate with time, as they learn what decisions and actions lead to a negative or positive outcome. As the algorithm is fed results of its actions and consequent outcomes it learns and adjusts to do more of X to get the desired result instead of Y. It’s getting closer and closer to Artificial Intelligence every day.

How does Machine Learning relate to Cognitive Computing?

Again, to quote Wikipedia: Cognitive computing is the simulation of human thought processes in a computerized model. Cognitive computing involves self-learning systems that use data mining, pattern recognition and natural language processing to mimic the way the human brain works. 

The world is currently generating data more rapidly than we are able to analyse it, is cognitive computing the answer?

Yes. Although the human mind is complex and powerful, we are unable to compete with computers when it comes to the speed in which they are able to analyse large sets of data, and recognise patterns and trends. And they are just getting faster and smarter. So, although the human race has been able to achieve some incredible things and there doesn’t seem to be any problem we cannot solve, in some cases, we lack the luxury of time to solve them. Cognitive computing could help us find answers or solutions to these problems faster.

How did you use machine learning to forecast the results of Rugby World Cup matches with a high level of accuracy? How was this possible?

Sports fans make their own predictions on match results based on their own experience and observations, as well as gut feel and personal bias. With machine learning, we based our predictions primarily on data we took from 6,000 matches played by 99 teams since 1995. As we then progressed through the World Cup matches, we incrementally added the results from each match to our model, so the model could adjust its prediction based on what  happened in the last few matches. What was interesting was that the model didn’t look at who played the matches, but rather the characteristics of the teams that played the matches. So, there was no bias towards any team – it was just looking at the data or the characteristics of a specific in making its prediction. When we added that new data, the model adjusted and compared the characteristics of the teams whose data was added and the result of these teams’ matches and adjusted its expectations for teams with the same or similar characteristics. We continually added new data and the model continually adjusted to this new data, increasing the accuracy of our prediction with every match played. One interesting set of data we included that added a bit of the human element to the prediction were the fantasy value of the players and the bookie odds. We didn’t look at fields, or influencers, such as referee and weather as this would have taken a lot more time and effort and would not necessarily have resulted in a large enough increase in accuracy of the prediction to justify the added effort.

Using machine learning in business - download guide

Julian Diaz
Julian Diaz
Julian Diaz was Head of Marketing for Principa until 2017, after which he became Head of Marketing for Honeybee CRM. American born and raised, Julian has worked in the IT industry for over 20 years. Having begun his career at a major software company in Germany, Julian made the move to South Africa in 1998 when he joined Dimension Data and later MWEB (leading South African ISP). Since then, Julian has helped launch various South African technology brands into international markets, including Principa.

Latest Posts

The 7 types of credit risk in SME lending

  It is common knowledge in the industry that the credit risk assessment of a consumer applying for credit is far less complex than that of a business that is applying for credit. Why is this the case? Simply put, consumers are usually very similar in their requirements and risks (homogenous) whilst businesses have far more varying risk elements (heterogenous). In this blog we will look at all the different risk elements within a business (here SME) credit application. These are: Risk of proprietors Risk of business Reason for loan Financial ratios Size of loan Risk industry Risk of region Before we delve into this list, it is worth noting that all of these factors need to be deployable as assessment tools within your originations system so it is key that you ensure your system can manage them. If you are on the look out for a loans origination system, then look no further than Principa’s AppSmart. If you are looking for a decision engine to manage your scorecards, policy rules and terms of business then take a look at our DecisionSmart business rules engine. AppSmart and DecisionSmart are part of Principa’s FinSmart Universe allowing for effective credit management across the customer life-cycle.   The different risk elements within a business credit application 1) Risk of proprietors For smaller organisations the risk of the business is inextricably linked to the financial well-being of the proprietors. How small is small? The rule of thumb is companies with up to two to three proprietors should have their proprietors assessed for risk too. This fits in with the SME segment. What data should be looked at? Generally in countries with mature credit bureaux, credit data is looked at including the score (there is normally a score cut-off) and then negative information such as the existence of judgements or defaults; these are typically used within policy rules. Those businesses with proprietors with excessive numbers of “negatives” may be disqualified from the loan application. Some credit bureaux offer a score of an individual based on the performance of all the businesses with which they are associated. This can also be useful in the credit risk assessment process. Another innovation being adopted internationally is the use of psychometrics in credit evaluation of the proprietors. To find out more about adopting credit scoring, read our blog on how to adopt credit scoring.   2) Risk of business The risk of the business should be managed through both scores and policy rules. Lenders will look at information such as the age of company, the experience of directors and the size of company etc. within a score. Alternatively, many lenders utilise the business score offered by credit bureaux. These scores are typically not as strong as consumer scores as the underlying data is limited and sometimes problematic. For example, large successful organisations may have judgements registered against their name which, unlike for consumers, is not necessarily a direct indication of the inability to service debt.   3) Reason for loan The reason for a loan is used more widely in business lending as opposed to unsecured consumer lending. Venture capital, working capital, invoice discounting and bridging finance are just some of many types of loan/facilities available and lenders need to equip themselves with the ability to manage each of these customer types whether it is within originations or collections. Prudent lenders venturing into the SME space for the first time often focus on one or two of these loan types and then expand later – as the operational implication for each type of loan is complex.   4) Financial ratios Financial ratios are core to commercial credit risk assessment. The main challenge here is to ensure that reliable financials are available from the customer. Small businesses may not be audited and thus the financials may be less trustworthy. Financial ratios can be divided into four categories: Profitability Leverage Coverage Liquidity Profitability can be further divided into margin ratios and return ratios. Lenders are frequently interested in gross profit margins; this is normally explicit on the income statement. The EBIDTA margin and operating profit margins are also used as well as return ratios such as return on assets, return on equity and risk-adjusted-returns. Leverage ratios are useful to lenders as they reflect the portion of the business that is financed by debt. Lower leverage ratios indicate stability. Leverage ratios assessed often incorporate debt-to-asset, debt-to-equity and asset-to-equity. Coverage ratios indicate the coverage that income or assets provide for the servicing of debt or interest expenses. The higher the coverage ratio the better it is for the lender. Coverage ratios are worked out considering the loan/facility that is being applied for. Finally, liquidity ratios indicate the ability for a company to convert its assets into cash. There are a variety of ratios used here. The current ratio is simply the ratio of assets to liabilities. The quick ratio is the ability for the business to pay its current debts off with readily available assets. The higher the liquidity ratios the better. Ratios are used both within credit scorecards as well as within policy rules. You can read more about these ratios here.   5) Size of loan When assessing credit risk for a consumer, the risk of the consumer does not normally change with the change of loan amount or facility (subject to the consumer passing affordability criteria). With business loans, loan amounts can range quite dramatically, and the risk of the applicant is normally tied to the loan amount requested. The loan/facility amount will of course change the ratios (mentioned in the last section) which could affect a positive/negative outcome. The outcome of the loan application is usually directly linked to a loan amount and any marked change to this loan amount would change the risk profile of the application.   6) Risk of industry The risk of an industry in which the SME operates can have a strong deterministic relationship with the entity being able to service the debt. Some lenders use this and those who do not normally identify this as a missing element in their risk assessment process. The identification of industry is always important. If you are in manufacturing, but your clients are the mines, then you are perhaps better identified as operating in mining as opposed to manufacturing. Most lenders who assess industry, will periodically rule out certain industries and perhaps also incorporate industry within their scorecard. Others take a more scientific approach. In the graph below the performance of an industry is tracked for two years and then projected over the next 6 months; this is then compared to the country’s GDP. As the industry appears to track above the projected GDP, a positive outlook is given to this applicant and this may affect them favourably in the credit application.                   7) Risk of Region   The last area of assessment is risk of region. Of the seven, this one is used the least. Here businesses,  either on book or on the bureau, are assessed against their geo-code. Each geo-code is clustered, and the projected outlook is given as positive, static or negative. As with industry this can be used within the assessment process as a policy rule or within a scorecard.   Bringing the seven risk categories together in a risk assessment These seven risk assessment categories are all important in the risk assessment process. How you bring it all together is critical. If you would like to discuss your SME evaluation challenges or find out more about what we offer in credit management software (like AppSmart and DecisionSmart), get in touch with us here.

Collections Resilience post COVID-19 - part 2

Principa Decisions (Pty) L

Collections Resilience post COVID-19

Principa Decisions (Pty) L