The Data Analytics Blog

Our news and views relating to Data Analytics, Big Data, Machine Learning, and the world of Credit.

All Posts

Can Machines Predict The Outcome Of The Rugby World Cup?

September 22, 2015 at 2:00 PM

It’s Man vs. the Machine as South African based data analytics company, Principa, apply predictive analytics and machine learning to predict the winners and spread of each match during the Rugby World Cup.

South African based data analytics company, Principa, have signed up two internal teams of data scientists onto sports prediction site SuperBru.com as an exercise to put theory into play in this year’s Rugby World Cup. By applying the same principles used to predict customer behaviour for the company’s financial services and retail clients, two teams of data scientists are vying against each other to develop algorithms and predictive models that can predict the outcome of the matches with the highest accuracy.

The purpose of the exercise is to see how well predictive analytics techniques used successfully in other areas can outperform the best human made predictions within the context of sport on SuperBru.com.   

The two Principa teams – Nero and Trojan - are looking at a wide range of data to predict as accurately as possible the win-lose outcome of each match and the margin between the two teams. The teams are considering data and information, such as recent performance, bookie odds, each team’s current world rankings, previous number of tries and even the value of individual players from a fantasy league.

“Our teams of data scientists have looked at data from over 6,000 matches played by 99 teams going back 20 years to identify patterns that are highly probable to repeat in future,” says Jaco Rossouw, Director of Delivery at Principa. “However, due to the many human variables in a match – such as injuries, penalties, referee calls, last-minute player decisions and even health - we may not be able to predict the exact scores, but with each match we will be able to provide an increasingly high probability of our predicted outcome.”

As the objective of machine learning is to develop computer programs that can teach themselves to grow and change when exposed to new data, the two teams’ algorithms will be adjusted with the results of each Rugby World Cup match to improve the accuracy of each prediction generated.   

Some of the more interesting statistics and patterns the data scientists at Principa have discovered from analysing over 6,000 matches played by 99 teams since 1995 are:

  1. New Zealand have won 84% of the matches they have played compared to 66% wins by Australia, 62% wins by South Africa, and 61% by England;
  2. New Zealand scores an average of 36.9 points in a match compared to 28.9 by Australia, 28.5 by England and 28.4 by South Africa; and
  3. On average about 20% of all matches were upsets where a higher ranking team was defeated by a lower ranking team.

Principa have made a page available online with an overview of all the insights they have derived from the past 20 years of rugby at http://wonders.principadata.com/rugby-world-cup-2015-rugby-statistics-from-1995-2015 .

The company will also be posting their teams’ data-driven predictions before every match on their website as well as via their Twitter (@PrincipaD) and Facebook accounts. The last set of predictions can be viewed here.

“It will be interesting to see how accurate our algorithms and models are in predicting the outcomes of the matches. In reality, relying on data insights without proper interpretation by subject-matter experts can lead to sub-optimal if not disastrous results. So, we encourage rugby fans to use our data-driven predictions as a starting point upon which to apply experience and their own knowledge - and a dash of “gut” feeling – to make their own predictions for each match,” concludes Rossouw.

Using machine learning in business - download guide 

Julian Diaz
Julian Diaz
Julian Diaz was Head of Marketing for Principa until 2017, after which he became Head of Marketing for Honeybee CRM. American born and raised, Julian has worked in the IT industry for over 20 years. Having begun his career at a major software company in Germany, Julian made the move to South Africa in 1998 when he joined Dimension Data and later MWEB (leading South African ISP). Since then, Julian has helped launch various South African technology brands into international markets, including Principa.

Latest Posts

The 7 types of credit risk in SME lending

  It is common knowledge in the industry that the credit risk assessment of a consumer applying for credit is far less complex than that of a business that is applying for credit. Why is this the case? Simply put, consumers are usually very similar in their requirements and risks (homogenous) whilst businesses have far more varying risk elements (heterogenous). In this blog we will look at all the different risk elements within a business (here SME) credit application. These are: Risk of proprietors Risk of business Reason for loan Financial ratios Size of loan Risk industry Risk of region Before we delve into this list, it is worth noting that all of these factors need to be deployable as assessment tools within your originations system so it is key that you ensure your system can manage them. If you are on the look out for a loans origination system, then look no further than Principa’s AppSmart. If you are looking for a decision engine to manage your scorecards, policy rules and terms of business then take a look at our DecisionSmart business rules engine. AppSmart and DecisionSmart are part of Principa’s FinSmart Universe allowing for effective credit management across the customer life-cycle.   The different risk elements within a business credit application 1) Risk of proprietors For smaller organisations the risk of the business is inextricably linked to the financial well-being of the proprietors. How small is small? The rule of thumb is companies with up to two to three proprietors should have their proprietors assessed for risk too. This fits in with the SME segment. What data should be looked at? Generally in countries with mature credit bureaux, credit data is looked at including the score (there is normally a score cut-off) and then negative information such as the existence of judgements or defaults; these are typically used within policy rules. Those businesses with proprietors with excessive numbers of “negatives” may be disqualified from the loan application. Some credit bureaux offer a score of an individual based on the performance of all the businesses with which they are associated. This can also be useful in the credit risk assessment process. Another innovation being adopted internationally is the use of psychometrics in credit evaluation of the proprietors. To find out more about adopting credit scoring, read our blog on how to adopt credit scoring.   2) Risk of business The risk of the business should be managed through both scores and policy rules. Lenders will look at information such as the age of company, the experience of directors and the size of company etc. within a score. Alternatively, many lenders utilise the business score offered by credit bureaux. These scores are typically not as strong as consumer scores as the underlying data is limited and sometimes problematic. For example, large successful organisations may have judgements registered against their name which, unlike for consumers, is not necessarily a direct indication of the inability to service debt.   3) Reason for loan The reason for a loan is used more widely in business lending as opposed to unsecured consumer lending. Venture capital, working capital, invoice discounting and bridging finance are just some of many types of loan/facilities available and lenders need to equip themselves with the ability to manage each of these customer types whether it is within originations or collections. Prudent lenders venturing into the SME space for the first time often focus on one or two of these loan types and then expand later – as the operational implication for each type of loan is complex.   4) Financial ratios Financial ratios are core to commercial credit risk assessment. The main challenge here is to ensure that reliable financials are available from the customer. Small businesses may not be audited and thus the financials may be less trustworthy. Financial ratios can be divided into four categories: Profitability Leverage Coverage Liquidity Profitability can be further divided into margin ratios and return ratios. Lenders are frequently interested in gross profit margins; this is normally explicit on the income statement. The EBIDTA margin and operating profit margins are also used as well as return ratios such as return on assets, return on equity and risk-adjusted-returns. Leverage ratios are useful to lenders as they reflect the portion of the business that is financed by debt. Lower leverage ratios indicate stability. Leverage ratios assessed often incorporate debt-to-asset, debt-to-equity and asset-to-equity. Coverage ratios indicate the coverage that income or assets provide for the servicing of debt or interest expenses. The higher the coverage ratio the better it is for the lender. Coverage ratios are worked out considering the loan/facility that is being applied for. Finally, liquidity ratios indicate the ability for a company to convert its assets into cash. There are a variety of ratios used here. The current ratio is simply the ratio of assets to liabilities. The quick ratio is the ability for the business to pay its current debts off with readily available assets. The higher the liquidity ratios the better. Ratios are used both within credit scorecards as well as within policy rules. You can read more about these ratios here.   5) Size of loan When assessing credit risk for a consumer, the risk of the consumer does not normally change with the change of loan amount or facility (subject to the consumer passing affordability criteria). With business loans, loan amounts can range quite dramatically, and the risk of the applicant is normally tied to the loan amount requested. The loan/facility amount will of course change the ratios (mentioned in the last section) which could affect a positive/negative outcome. The outcome of the loan application is usually directly linked to a loan amount and any marked change to this loan amount would change the risk profile of the application.   6) Risk of industry The risk of an industry in which the SME operates can have a strong deterministic relationship with the entity being able to service the debt. Some lenders use this and those who do not normally identify this as a missing element in their risk assessment process. The identification of industry is always important. If you are in manufacturing, but your clients are the mines, then you are perhaps better identified as operating in mining as opposed to manufacturing. Most lenders who assess industry, will periodically rule out certain industries and perhaps also incorporate industry within their scorecard. Others take a more scientific approach. In the graph below the performance of an industry is tracked for two years and then projected over the next 6 months; this is then compared to the country’s GDP. As the industry appears to track above the projected GDP, a positive outlook is given to this applicant and this may affect them favourably in the credit application.                   7) Risk of Region   The last area of assessment is risk of region. Of the seven, this one is used the least. Here businesses,  either on book or on the bureau, are assessed against their geo-code. Each geo-code is clustered, and the projected outlook is given as positive, static or negative. As with industry this can be used within the assessment process as a policy rule or within a scorecard.   Bringing the seven risk categories together in a risk assessment These seven risk assessment categories are all important in the risk assessment process. How you bring it all together is critical. If you would like to discuss your SME evaluation challenges or find out more about what we offer in credit management software (like AppSmart and DecisionSmart), get in touch with us here.

Collections Resilience post COVID-19 - part 2

Principa Decisions (Pty) L

Collections Resilience post COVID-19

Principa Decisions (Pty) L