The Data Analytics Blog

Our news and views relating to Data Analytics, Big Data, Machine Learning, and the world of Credit.

All Posts

Data Analytics 101: Turning Credit Risk Managers Into Data Addicts

September 16, 2015 at 9:49 AM


In the field of credit risk management, few would challenge data’s role in financial forecasting, lender analysis, credit-modelling and risk aversion. In short, credit risk managers are no strangers to data. But it could be argued that the value and volume of data they have access to largely determine the quality of their decision making. The shift towards more technology and data-centric business models has created new opportunities for those in the credit risk landscape to play more collaborative roles and engage other business divisions to produce positive outcomes in shorter time-spans.

With this said, let’s take a look at how data analytics brings credit risk management practices into sharper focus, resulting in more profitable decisions, reduced risk and predictable outcomes.

In a world of risk, data is king

Seasoned credit risk managers do well to err on the side of caution if the metrics don’t support the hypothesis. However, an overly conservative culture can lead to missed opportunities for new revenue streams. This is why data analytics is key to giving deeper insights into customers’ risk profiles and support a number of key decisions along the credit lifecycle (origination, account management, collections and recoveries). When data insights are applied to key decisions at each phase of the credit lifecycle, such as credit approvals, loan amounts, interest rates, propensities to roll and pay, risk managers are able to make more profitable decisions that enhance returns while minimising risk.

Credit risk managers should leverage data democratisation for better decision-making

Data centralisation has spawned a culture of information-sharing across departments, resulting in fewer silos within organisations. New collaborations give credit risk managers the benefit of data democratisation to empower their decision-making processes even further. Often drawing from sales, legal, marketing and other sources, credit departments historically found themselves going from pillar to post to build some context around their customers. Thanks to convergence and the augmentation of internal data sources with external credit, transactional, income and other data, credit risk practises are gaining deeper visibility into who their customers (both performing and non-performing) are and the likely credit risk outcomes emanating from discrete risk profiles. For example, data analytics reveal much about payment behaviour, income fluctuation and various lifecycle stages that people - or businesses – experience, thus allowing credit risk practitioners to mitigate risk for customer and credit provider alike.

Data analytics redefines what credit risk managers perceive as credit risk

Data analytics eliminates the “gut feeling / anecdotal” approach to credit risk practices and replaces it with actionable metrics that allow credit risk practitioners to spot credit risks and opportunities wherever it may exist. This visibility results in greater context that in turn improves the decision-making process - making it easier for companies to segment their customers on a more granular level. With 51% of South African adults holding an account at a financial institution, the opportunities to enhance insights across originations, account management, collections and recoveries environment have never been greater. It is, however, a question of finding the most suitable credit risk enhancement and mitigation techniques. And that is the role of data analytics: creating new credit risk insights and balancing effort and outcome to optimise portfolio yields.

Image credit:

Julian Diaz
Julian Diaz
Julian Diaz was Head of Marketing for Principa until 2017, after which he became Head of Marketing for Honeybee CRM. American born and raised, Julian has worked in the IT industry for over 20 years. Having begun his career at a major software company in Germany, Julian made the move to South Africa in 1998 when he joined Dimension Data and later MWEB (leading South African ISP). Since then, Julian has helped launch various South African technology brands into international markets, including Principa.

Latest Posts

[Slideshare] How To Make Your Business Data Work For You

Common barriers to success: Skills shortage: data scientists are in high demand and in low supply. Companies lack the skills to develop advanced data analytics or machine learning applications. Cost: recruiting and building up or training a team, as well as infrastructure costs are immense. Inefficiency and low ROI on: acquisition campaigns; re-activation and retention campaigns; outbound sales calls and debt collection. Resulting in: No or ineffective use of data. High cost to get insights from data. Low returns from campaigns. What’s the alternative? Machine Learning as a Service (MLaaS): removes infrastructure skills and requirements for machine learning, allowing you to begin benefiting from machine learning quickly with little investment. Subscription based pricing, allowing you to benefit using machine learning while minimising your set-up costs and seeing returns sooner. Answers as a Service: Use historic data and machine learning to allow answers to increase in accuracy with time. MLaaS with predictive models pre-developed to answers specific questions: Genius Call Connect: What is the best time and number to call customers? Genius Customer Growth: Which customers are most likely to respond to cross-sell? Genius Re-activation: Which dormant customers are worth re-activating? Genius Customer Retention: Which customers are most likely to churn? Genius Leads: Which contacts are likely to respond to my campaign? Genius Risk Classifier: Which debtors are most likely to pay or roll? Benefits of Genius: Quick and cost-effective ability to leverage machine learning: Minimal set-up time Minimal involvement from IT Subscription based service Looking to make your data work for your business? Read more on Genius to see how it can help your business succeed. 

5 Must-Join Facebook Pages For Data Science, Machine Learning And Artificial Intelligence In 2019

While LinkedIn has traditionally been thought of as the business or work focussed social platform, Facebook has been making headway into gaining market share in the space as well. With company pages and groups, Facebook is catering to every interest and aspiration that people might have – and combining that with their social interactions and news sources. Facebook aims to give users a one-stop-shop experience, and it’s very good at doing it.

Our 2018 Customer Acquisition And Engagement Blog Roundup

Our final roundup this year covers two of our main topics: customer acquisition and customer engagement. We’ve not covered these topics in depth this year, and so decided to combine these two to provide a roundup of the best of both.