The Data Analytics Blog

Our news and views relating to Data Analytics, Big Data, Machine Learning, and the world of Credit.

All Posts

How Marketers Can Use Machine Learning To Boost Customer Loyalty

September 12, 2016 at 2:03 PM

Thanks to mobile technology, wearable devices, social media and the general pervasiveness of the internet, an abundance of new customer information is now available to marketers. This data, if leveraged optimally, can create opportunities for companies to better align their products and services to the fluctuating needs of a demanding market space.

Read our "layman's" definition on What is Machine Learning?

However, the challenge of sorting through swathes of unstructured data to identify patterns and trends in customer behaviour and preferences can lead to a situation in which marketers are drowning in data without a single insight to show for it. And as any marketer will tell you, speed is of the essence to reach your customer at that moment of truth. Machine Learning is enabling marketers to “hyper-personalise” offers on an individual customer basis to boost customer loyalty.

Machine Learning enables hyper-targeting and optimal offers

As marketers, we’re all familiar with the use of customer data to segment our markets and personalise our engagement. But the reality is that we are limited by our own ability to process large amounts of data from various sources quickly, which results in us – at best – personalising at a group level, by segment rather than by individual. With the power of Machine Learning driving rewards and offers, marketers can now “hyper-target” and offer highly-personalised offers or rewards at an individual level - rather than at a group or segment level - at the right time, e.g. when the customer is browsing online or paying for their items at the till.

Machine learning uses mathematical algorithms and computing power to process much more data than humanly possible, taking data from various sources – such as transaction history, responses to campaigns, lifestyle segmentation, bureau data – and identifying patterns and trends, considering thousands of options before choosing the optimal offer that will most likely generate the desired response. What’s more the “learning” bit in Machine Learning means that the algorithm then remembers what offers resulted in a positive response and applies the same logic to a customer with a similar profile. Your “marketing machine” is then constantly learning and updating your rewards and offers to improve ROI on your loyalty programme. Machine Learning can be used to cross-sell and up-sell, predict and reduce churn, and improve customer segmentation by identifying groups of customers with similar traits and behaviours. Perhaps the best way to understand how to create a data-driven loyalty program is to see one in action.

Read how Marketers use Machine Learning to prevent Customer Churn.

A real-life example

A great example of machine learning informing a data-driven loyalty program can be found in Europe. Viseca Card Services SA is a Switzerland-based credit card company that also offers point-of-sale (PoS) terminals and payment solutions to merchants and vendors. Because of their unique position between both customer and vendor, they have access to highly valuable data pools. They draw on this advantage in their loyalty program, offering loyalty rewards to both sides of their customer base. Each card holder is automatically enrolled in the program, then encouraged to use it through recommendations, which are given based on an event-tracking system that monitors online events, like going to a certain retail site, clicking on a certain product or searching for a set of terms.

The system also tracks negative events, which are described as items that are shown to a user but not clicked on. The process is a closed loop, learning from every user interaction as well as factoring in demographic data, transaction history, preferences, etc. The loyalty program is designed around the input and analysis of this data, and uses both supervised and unsupervised learning techniques to model consumer behaviour and feed recommendations. This leads to a loyalty program that caters to a customer’s needs and improves their brand loyalty to the company’s partnered vendors.

Read how Marketers use Machine Learning to Upsell and Cross-Sell.

Machine learning enables marketers to hyper-target customers and offer the optimal offer that will boost brand loyalty, reduce churn and increase sales.

using data analytics for customer engagement

Image credit:

Luke Turnbull
Luke Turnbull
Luke Turnbull was the Head of Customer and Lead Analytics at Principa, until the end of 2017, after which he returned to his home country of New Zealand. He worked in the financial services industry since 1995, during which time he worked in process, strategy and operational design across a range of organisations in New Zealand, the United Kingdom and South Africa. Luke had been with Principa for 9 years and led consulting engagements with Principa’s local retail clients across the customer lifecycle, with a particular focus on customer engagement and lead generation.

Latest Posts

The 7 types of credit risk in SME lending

  It is common knowledge in the industry that the credit risk assessment of a consumer applying for credit is far less complex than that of a business that is applying for credit. Why is this the case? Simply put, consumers are usually very similar in their requirements and risks (homogenous) whilst businesses have far more varying risk elements (heterogenous). In this blog we will look at all the different risk elements within a business (here SME) credit application. These are: Risk of proprietors Risk of business Reason for loan Financial ratios Size of loan Risk industry Risk of region Before we delve into this list, it is worth noting that all of these factors need to be deployable as assessment tools within your originations system so it is key that you ensure your system can manage them. If you are on the look out for a loans origination system, then look no further than Principa’s AppSmart. If you are looking for a decision engine to manage your scorecards, policy rules and terms of business then take a look at our DecisionSmart business rules engine. AppSmart and DecisionSmart are part of Principa’s FinSmart Universe allowing for effective credit management across the customer life-cycle.   The different risk elements within a business credit application 1) Risk of proprietors For smaller organisations the risk of the business is inextricably linked to the financial well-being of the proprietors. How small is small? The rule of thumb is companies with up to two to three proprietors should have their proprietors assessed for risk too. This fits in with the SME segment. What data should be looked at? Generally in countries with mature credit bureaux, credit data is looked at including the score (there is normally a score cut-off) and then negative information such as the existence of judgements or defaults; these are typically used within policy rules. Those businesses with proprietors with excessive numbers of “negatives” may be disqualified from the loan application. Some credit bureaux offer a score of an individual based on the performance of all the businesses with which they are associated. This can also be useful in the credit risk assessment process. Another innovation being adopted internationally is the use of psychometrics in credit evaluation of the proprietors. To find out more about adopting credit scoring, read our blog on how to adopt credit scoring.   2) Risk of business The risk of the business should be managed through both scores and policy rules. Lenders will look at information such as the age of company, the experience of directors and the size of company etc. within a score. Alternatively, many lenders utilise the business score offered by credit bureaux. These scores are typically not as strong as consumer scores as the underlying data is limited and sometimes problematic. For example, large successful organisations may have judgements registered against their name which, unlike for consumers, is not necessarily a direct indication of the inability to service debt.   3) Reason for loan The reason for a loan is used more widely in business lending as opposed to unsecured consumer lending. Venture capital, working capital, invoice discounting and bridging finance are just some of many types of loan/facilities available and lenders need to equip themselves with the ability to manage each of these customer types whether it is within originations or collections. Prudent lenders venturing into the SME space for the first time often focus on one or two of these loan types and then expand later – as the operational implication for each type of loan is complex.   4) Financial ratios Financial ratios are core to commercial credit risk assessment. The main challenge here is to ensure that reliable financials are available from the customer. Small businesses may not be audited and thus the financials may be less trustworthy. Financial ratios can be divided into four categories: Profitability Leverage Coverage Liquidity Profitability can be further divided into margin ratios and return ratios. Lenders are frequently interested in gross profit margins; this is normally explicit on the income statement. The EBIDTA margin and operating profit margins are also used as well as return ratios such as return on assets, return on equity and risk-adjusted-returns. Leverage ratios are useful to lenders as they reflect the portion of the business that is financed by debt. Lower leverage ratios indicate stability. Leverage ratios assessed often incorporate debt-to-asset, debt-to-equity and asset-to-equity. Coverage ratios indicate the coverage that income or assets provide for the servicing of debt or interest expenses. The higher the coverage ratio the better it is for the lender. Coverage ratios are worked out considering the loan/facility that is being applied for. Finally, liquidity ratios indicate the ability for a company to convert its assets into cash. There are a variety of ratios used here. The current ratio is simply the ratio of assets to liabilities. The quick ratio is the ability for the business to pay its current debts off with readily available assets. The higher the liquidity ratios the better. Ratios are used both within credit scorecards as well as within policy rules. You can read more about these ratios here.   5) Size of loan When assessing credit risk for a consumer, the risk of the consumer does not normally change with the change of loan amount or facility (subject to the consumer passing affordability criteria). With business loans, loan amounts can range quite dramatically, and the risk of the applicant is normally tied to the loan amount requested. The loan/facility amount will of course change the ratios (mentioned in the last section) which could affect a positive/negative outcome. The outcome of the loan application is usually directly linked to a loan amount and any marked change to this loan amount would change the risk profile of the application.   6) Risk of industry The risk of an industry in which the SME operates can have a strong deterministic relationship with the entity being able to service the debt. Some lenders use this and those who do not normally identify this as a missing element in their risk assessment process. The identification of industry is always important. If you are in manufacturing, but your clients are the mines, then you are perhaps better identified as operating in mining as opposed to manufacturing. Most lenders who assess industry, will periodically rule out certain industries and perhaps also incorporate industry within their scorecard. Others take a more scientific approach. In the graph below the performance of an industry is tracked for two years and then projected over the next 6 months; this is then compared to the country’s GDP. As the industry appears to track above the projected GDP, a positive outlook is given to this applicant and this may affect them favourably in the credit application.                   7) Risk of Region   The last area of assessment is risk of region. Of the seven, this one is used the least. Here businesses,  either on book or on the bureau, are assessed against their geo-code. Each geo-code is clustered, and the projected outlook is given as positive, static or negative. As with industry this can be used within the assessment process as a policy rule or within a scorecard.   Bringing the seven risk categories together in a risk assessment These seven risk assessment categories are all important in the risk assessment process. How you bring it all together is critical. If you would like to discuss your SME evaluation challenges or find out more about what we offer in credit management software (like AppSmart and DecisionSmart), get in touch with us here.

Collections Resilience post COVID-19 - part 2

Principa Decisions (Pty) L

Collections Resilience post COVID-19

Principa Decisions (Pty) L