The Data Analytics Blog

Our news and views relating to Data Analytics, Big Data, Machine Learning, and the world of Credit.

All Posts

[Slideshare] How To Identify And Pro-Actively Correct Operational Problems In Your Call Centre

Common Forecasting Approach in Call Centres

  • Gather, consolidate and analyse previous month; 3-months; quarter; years data and prepare performance forecast
  • Track performance against target retrospectively (Daily, Weekly and Monthly)
  • Implement corrective action based on historical information

Resulting in…

  • Missed targets
  • Inconsistent/inaccurate forecasting
  • The root cause of operational issue identified too late
  • Incorrect expectation management

What's the alternative?

  • Use Machine Learning to predict end of month sales and collection and identify operational problems in your call centre.
  • Proactively monitor performance against targets and take corrective action when required to ensure targets are met.
  • Diagnose operational problems that may exist and implement remedial action required to minimise any potential risks.

Prosperity for Call Centres

Prosperity uses advanced analytical models with built in Machine Learning to dynamically forecast the sales or collections against predefined KPIs. The results of these forecasts are presented via a portal for maximum visibility and proactive management.

Prosperity Features

  • Graphically plots performance metrics against targets
  • Provides month-end forecasts at the beginning of the month
  • Provides daily dynamic intra-month forecasts based on new available data
  • Use security profiles to restrict user access

Prosperity Benefits

  • Accurately predict month-end results
  • Fix root cause of expected shortfalls
  • Set and meet operational targets
  • Track impact of corrective action

Want to pro-actively boost your call centre results?

Read more on Prosperity or request a demo to see how Prosperity can predict and help you improve your results. 

Read more on Using The Power Of Prediction To Pro-Actively Action Intervention In Your Call Centre

Perry de Jager
Perry de Jager
Perry has been involved in Collections and Recoveries for the past 12 years, spending time in different market segments ranging from law firms to investment companies. At Principa, Perry has worked on extended projects within both South Africa and the Middle East with some of the largest financial organisation, providing on-site consulting within the collections and recoveries space covering strategy, process, people and technology.

Latest Posts

Will Your Machine Learning Models Pass The William Tell Test?

Machine learning models can be used very successfully in many different contexts to predict outcomes for different use cases accurately. These predictions can be used within the business to make better decisions or to operate more efficiently (or both) and can give you an edge over your competitors. Predictive models all follow the same recipe – i.e. train a model on historical data and then apply this model to unseen data to get predictions. If your model generalises well, you have a prediction that you can trust and use to decide "do this, not that" with some degree of accuracy.

Everything You Need To Know About MarketWise: Your FAQs Answered

What is MarketWise? MarketWise is an audience of online users within South Africa which can be segmented and arranged according to a brand or advertisers target market. Online ads can then be served to this audience as they browse the internet.