The Data Analytics Blog

Our news and views relating to Data Analytics, Big Data, Machine Learning, and the world of Credit.

All Posts

Our Top 10 Data Analytics Posts For 2017... So Far.

June 29, 2017 at 3:33 PM

Believe it or not, we are halfway through 2017 and if you're feeling like you're no where near achieving what you set out to achieve this year, I'm sure you're not alone.

But fear not! If one of your resolutions this year was to research how to apply data analytics or machine learning to your area of specialisation - be it Marketing, Customer Experience, Debt Collection or Risk Management -  you still have time! And our Data Analytics Blog is a good place to start.

I've looked at the stats and compiled our Top 10 list of most read blog posts for the first half of 2017. Check out our list of blog posts below and see what topics your colleagues and industry counterparts are researching this year:

10. How does Data Analytics help Debt Collection?

Credit lenders use data analytics to assess potential clients and determine affordability. However, many credit lenders and debt collection companies fail to apply the same practice when dealing with defaulting clients. In my first blog post, I'll cover the important role that data analytics can play in collections operations. Read more...

9. What  is Customer Segmentation?

Effective communication helps us better understand and connect with those around us. It allows us to build trust and respect, and to foster good, long-lasting relationships. Imagine having this ability to connect with every customer (or potential customer) you interact with through communication that addresses their motivators and desires. In this blog post, I take a brief look at ‘customer segmentation’ and how it can foster the type of communication that leads to greater customer retention and conversion rates. Read more...

8. The 7 Logical Fallacies to avoid in Data Analysis

“Lies, damned lies and statistics” is the frequently quoted adage attributed to former British Prime Minister Benjamin Disraeli. The manipulation of data to fit a narrative is a very common occurrence from politics, economics to business and beyond. In this blog post, we'll touch on the more common logical fallacies that can be encountered and should be avoided in data analysis. Read more...

7. Three ways Credit Risk Managers should be using Big Data

In order to survive and thrive in this economic climate, credit risk professionals need to consider innovative means of decreasing default rates and improving the accuracy with which credit is issued. One such way is applying data analytics to Big Data. Read more...

6. How Machine Learning is helping call centres improve the Customer Experience

The call centre world, unsurprisingly, ranks as one of the highest adopters of data analytics platforms year on year. This is largely due to the invaluable insights we gain through the analysis of thousands of calls received each day by the typical call centre.  With speed being of the essence in making the right decision at the right time for each caller many call centres are turning to machine learning to automate their data analysis and make crucial customer experience decisions within seconds. Read more...

5. Hostage negotiation tips and techniques for Debt Collection

I contacted a former hostage negotiator from the South African Police Service (SAPS) and had the pleasure of spending the morning with him a few weeks ago. In this blog post, I’ll outline some of the key techniques learned in negotiation from a hostage negotiator and how they can be applied to achieve significant lift in your debt collection outcomes. Read more...

4. How Marketers are using Machine Learning to upsell and cross-sell

McDonalds mastered the upsell with one simple question at the time of purchase: “You want fries with that?” A simple and relevant question at the right time that has likely generated millions of extra dollars in revenue through the years for the company. Ever since then, companies have tried to emulate their success by identifying complementary products in their offering and training sales staff to ask customers the right question at the right time. Read more...

3. Making the move from Predictive Modelling to Machine Learning

The move from predictive modelling to machine learning can be easier than you think. However, before making that move you need to keep two key considerations in mind to ensure that you benefit from all that machine learning has to offer and that your predictive analytics system remains a trustworthy tool that lifts your business, rather than harming it: the Consequence of Failure and Retaining Frequency. Read more...

2. How Marketers use Machine Learning in Retail

Machine learning is revolutionising how companies are capitalising on Big Data to develop their marketing strategies. While the term encompasses a broad spectrum of technologies and approaches, in a marketing context it can be used to improve targeting, response rates and overall marketing ROI. Read more...

1.  The 4 types of Data Analytics

We've covered a few fundamentals and pitfalls of data analytics in our past blog posts. In this blog post, we focus on the four types of data analytics we encounter in data science: Descriptive, Diagnostic, Predictive and Prescriptive. Read more...

There you have it: the topics our visitors found most compelling for their business. If one of your new year's resolutions was indeed to apply Machine Learning and Data Science to your business area, please visit our home page to learn about our new subscription based Machine Learning and Artificial Intelligence applications-as-a-service for Credit Risk, Marketing, Call Centres, Customer Acquisition, Customer Engagement and Collections & Recoveries. 

Boost Collection yields with Machine Learning applications as a service

Julian Diaz
Julian Diaz
Julian Diaz was Head of Marketing for Principa until 2017, after which he became Head of Marketing for Honeybee CRM. American born and raised, Julian has worked in the IT industry for over 20 years. Having begun his career at a major software company in Germany, Julian made the move to South Africa in 1998 when he joined Dimension Data and later MWEB (leading South African ISP). Since then, Julian has helped launch various South African technology brands into international markets, including Principa.

Latest Posts

The 7 types of credit risk in SME lending

  It is common knowledge in the industry that the credit risk assessment of a consumer applying for credit is far less complex than that of a business that is applying for credit. Why is this the case? Simply put, consumers are usually very similar in their requirements and risks (homogenous) whilst businesses have far more varying risk elements (heterogenous). In this blog we will look at all the different risk elements within a business (here SME) credit application. These are: Risk of proprietors Risk of business Reason for loan Financial ratios Size of loan Risk industry Risk of region Before we delve into this list, it is worth noting that all of these factors need to be deployable as assessment tools within your originations system so it is key that you ensure your system can manage them. If you are on the look out for a loans origination system, then look no further than Principa’s AppSmart. If you are looking for a decision engine to manage your scorecards, policy rules and terms of business then take a look at our DecisionSmart business rules engine. AppSmart and DecisionSmart are part of Principa’s FinSmart Universe allowing for effective credit management across the customer life-cycle.   The different risk elements within a business credit application 1) Risk of proprietors For smaller organisations the risk of the business is inextricably linked to the financial well-being of the proprietors. How small is small? The rule of thumb is companies with up to two to three proprietors should have their proprietors assessed for risk too. This fits in with the SME segment. What data should be looked at? Generally in countries with mature credit bureaux, credit data is looked at including the score (there is normally a score cut-off) and then negative information such as the existence of judgements or defaults; these are typically used within policy rules. Those businesses with proprietors with excessive numbers of “negatives” may be disqualified from the loan application. Some credit bureaux offer a score of an individual based on the performance of all the businesses with which they are associated. This can also be useful in the credit risk assessment process. Another innovation being adopted internationally is the use of psychometrics in credit evaluation of the proprietors. To find out more about adopting credit scoring, read our blog on how to adopt credit scoring.   2) Risk of business The risk of the business should be managed through both scores and policy rules. Lenders will look at information such as the age of company, the experience of directors and the size of company etc. within a score. Alternatively, many lenders utilise the business score offered by credit bureaux. These scores are typically not as strong as consumer scores as the underlying data is limited and sometimes problematic. For example, large successful organisations may have judgements registered against their name which, unlike for consumers, is not necessarily a direct indication of the inability to service debt.   3) Reason for loan The reason for a loan is used more widely in business lending as opposed to unsecured consumer lending. Venture capital, working capital, invoice discounting and bridging finance are just some of many types of loan/facilities available and lenders need to equip themselves with the ability to manage each of these customer types whether it is within originations or collections. Prudent lenders venturing into the SME space for the first time often focus on one or two of these loan types and then expand later – as the operational implication for each type of loan is complex.   4) Financial ratios Financial ratios are core to commercial credit risk assessment. The main challenge here is to ensure that reliable financials are available from the customer. Small businesses may not be audited and thus the financials may be less trustworthy. Financial ratios can be divided into four categories: Profitability Leverage Coverage Liquidity Profitability can be further divided into margin ratios and return ratios. Lenders are frequently interested in gross profit margins; this is normally explicit on the income statement. The EBIDTA margin and operating profit margins are also used as well as return ratios such as return on assets, return on equity and risk-adjusted-returns. Leverage ratios are useful to lenders as they reflect the portion of the business that is financed by debt. Lower leverage ratios indicate stability. Leverage ratios assessed often incorporate debt-to-asset, debt-to-equity and asset-to-equity. Coverage ratios indicate the coverage that income or assets provide for the servicing of debt or interest expenses. The higher the coverage ratio the better it is for the lender. Coverage ratios are worked out considering the loan/facility that is being applied for. Finally, liquidity ratios indicate the ability for a company to convert its assets into cash. There are a variety of ratios used here. The current ratio is simply the ratio of assets to liabilities. The quick ratio is the ability for the business to pay its current debts off with readily available assets. The higher the liquidity ratios the better. Ratios are used both within credit scorecards as well as within policy rules. You can read more about these ratios here.   5) Size of loan When assessing credit risk for a consumer, the risk of the consumer does not normally change with the change of loan amount or facility (subject to the consumer passing affordability criteria). With business loans, loan amounts can range quite dramatically, and the risk of the applicant is normally tied to the loan amount requested. The loan/facility amount will of course change the ratios (mentioned in the last section) which could affect a positive/negative outcome. The outcome of the loan application is usually directly linked to a loan amount and any marked change to this loan amount would change the risk profile of the application.   6) Risk of industry The risk of an industry in which the SME operates can have a strong deterministic relationship with the entity being able to service the debt. Some lenders use this and those who do not normally identify this as a missing element in their risk assessment process. The identification of industry is always important. If you are in manufacturing, but your clients are the mines, then you are perhaps better identified as operating in mining as opposed to manufacturing. Most lenders who assess industry, will periodically rule out certain industries and perhaps also incorporate industry within their scorecard. Others take a more scientific approach. In the graph below the performance of an industry is tracked for two years and then projected over the next 6 months; this is then compared to the country’s GDP. As the industry appears to track above the projected GDP, a positive outlook is given to this applicant and this may affect them favourably in the credit application.                   7) Risk of Region   The last area of assessment is risk of region. Of the seven, this one is used the least. Here businesses,  either on book or on the bureau, are assessed against their geo-code. Each geo-code is clustered, and the projected outlook is given as positive, static or negative. As with industry this can be used within the assessment process as a policy rule or within a scorecard.   Bringing the seven risk categories together in a risk assessment These seven risk assessment categories are all important in the risk assessment process. How you bring it all together is critical. If you would like to discuss your SME evaluation challenges or find out more about what we offer in credit management software (like AppSmart and DecisionSmart), get in touch with us here.

Collections Resilience post COVID-19 - part 2

Principa Decisions (Pty) L

Collections Resilience post COVID-19

Principa Decisions (Pty) L