The Data Analytics Blog

Our news and views relating to Data Analytics, Big Data, Machine Learning, and the world of Credit.

All Posts

#PostTruth – What Does It Mean In The World Of Data Science?

January 9, 2017 at 4:19 PM

Silouhetter of Pinocchio and the definition of Post-truthIf I was to sum up our purpose at Principa, it would be “to help clients make informed decisions using data, analytics and software”.  As information grows, so the opportunity to make better decisions increases.  Data helps you understand your customer better.  That’s our mantra.  That’s our ethos.  That’s why we are.

Our long march towards “better decisions” through the clever use of data could not have been juxtaposed better (worse?) last year with the news that post-truth was the Oxford English Dictionary choice for Word of the Year.  This should be no surprise to anyone who at least offered a fleeting glance to two of the chief stories of 2016 – the Brexit vote and the US Presidential Election.

It appeared suddenly that data was irrelevant in political decisions - just look at the Washington Post’s extensive list of fabrications made by Donald Trump during the election campaign or Michael Gove (a key evangelist for Brexit) proclaiming that Britain had had "enough of experts".

Is evidence now passé? Has our existence as data scientists been scuppered by two 2016 elections in the US and Britain?  Do we at Principa now suddenly have an existential crisis?!

Not New

Actually this idea of post truth is not a new concept.  If you’re interested and have some time it’s worth reading up on 17th Century philosopher Sir Francis Bacon’s “Idols the Mind” (a decent summary is available here where he addresses why we are disposed to such thinking).

More recently, though, “post-truth” is the odour from the rot that is the post-modernist movement that has been with us for a few decades now.  A significant part of the postmodernism movement is a rejection of objective reality and rationalism often claiming this to be a product of sociological and political interpretation.

Some of you may remember the incident in the video snippet below from the University of Cape Town #Fallist Movement’s call for #ScienceMustFall in October 2016.

Postmodernism advocates for a more pluralist approach and sees science as just another narrative. The arguable cultural partialities in certain scientific narratives notwithstanding, science is an unbiased, self-correcting and valuable process that can be applied to help understand the world around us.

Science has been battling postmodern thinking for a while.  So where does that leave us data scientists?

Data Science

Despite the shock and horror of Post-truth 2016, I don’t think we as data scientists have a crisis at all, but rather a number of key challenges that we should address and continue to address.

  1. The value of what we do is typically quantifiable. Do you believe opinion or gut trumps the data?  You can test it to determine so.  Will a new model provide the lift that the analyst suggests?  Run a randomised champion/challenger test with pre-defined metrics to measure over a predetermined period of time.
  2. For many, just like the British and American electorate, consuming the flood of new information (data) feels like trying to drink from a fire hydrant. It’s easy to give up, but adopting appropriate techniques and technology in a well-planned methodical manner, will bring value to your business. Principa advocate the 3D approach
  3. If you’re utilising data to make decisions or looking for value in data, conduct your analysis or run your models always with key scientific principals in mind (for example: randomisation, statistical significance, champion/challenger testing, cherry picking, confidence in your data, sampling, confidence intervals, boot-strapping, extrapolation, inferences, etc.)
  4. The last point is education of the cynics and the uninformed. We need to be evangelists for our trade and honest proprietors too.  Information is the new wealth, but only if translated into wisdom and data science enables us to do this.

Conclusion

As the world navigates itself through fake news, echo chambers and post-truth, we data scientists will continue to work to harness the value in the data out there. Unlike politics, fortunately the decisions we make in business are not popularity contests. Even if a debate around the board-room becomes political, we will still have the ability to test our models and hypotheses through sound data science. Embrace it!

Truthseeker - logical fallacies

Thomas Maydon
Thomas Maydon
Thomas Maydon is the Head of Credit Solutions at Principa. With over 17 years of experience in the Southern African, West African and Middle Eastern retail credit markets, Tom has primarily been involved in consulting, analytics, credit bureau and predictive modelling services. He has experience in all aspects of the credit life cycle (in multiple industries) including intelligent prospecting, originations, strategy simulation, affordability analysis, behavioural modelling, pricing analysis, collections processes, and provisions (including Basel II) and profitability calculations.

Latest Posts

The 7 types of credit risk in SME lending

  It is common knowledge in the industry that the credit risk assessment of a consumer applying for credit is far less complex than that of a business that is applying for credit. Why is this the case? Simply put, consumers are usually very similar in their requirements and risks (homogenous) whilst businesses have far more varying risk elements (heterogenous). In this blog we will look at all the different risk elements within a business (here SME) credit application. These are: Risk of proprietors Risk of business Reason for loan Financial ratios Size of loan Risk industry Risk of region Before we delve into this list, it is worth noting that all of these factors need to be deployable as assessment tools within your originations system so it is key that you ensure your system can manage them. If you are on the look out for a loans origination system, then look no further than Principa’s AppSmart. If you are looking for a decision engine to manage your scorecards, policy rules and terms of business then take a look at our DecisionSmart business rules engine. AppSmart and DecisionSmart are part of Principa’s FinSmart Universe allowing for effective credit management across the customer life-cycle.   The different risk elements within a business credit application 1) Risk of proprietors For smaller organisations the risk of the business is inextricably linked to the financial well-being of the proprietors. How small is small? The rule of thumb is companies with up to two to three proprietors should have their proprietors assessed for risk too. This fits in with the SME segment. What data should be looked at? Generally in countries with mature credit bureaux, credit data is looked at including the score (there is normally a score cut-off) and then negative information such as the existence of judgements or defaults; these are typically used within policy rules. Those businesses with proprietors with excessive numbers of “negatives” may be disqualified from the loan application. Some credit bureaux offer a score of an individual based on the performance of all the businesses with which they are associated. This can also be useful in the credit risk assessment process. Another innovation being adopted internationally is the use of psychometrics in credit evaluation of the proprietors. To find out more about adopting credit scoring, read our blog on how to adopt credit scoring.   2) Risk of business The risk of the business should be managed through both scores and policy rules. Lenders will look at information such as the age of company, the experience of directors and the size of company etc. within a score. Alternatively, many lenders utilise the business score offered by credit bureaux. These scores are typically not as strong as consumer scores as the underlying data is limited and sometimes problematic. For example, large successful organisations may have judgements registered against their name which, unlike for consumers, is not necessarily a direct indication of the inability to service debt.   3) Reason for loan The reason for a loan is used more widely in business lending as opposed to unsecured consumer lending. Venture capital, working capital, invoice discounting and bridging finance are just some of many types of loan/facilities available and lenders need to equip themselves with the ability to manage each of these customer types whether it is within originations or collections. Prudent lenders venturing into the SME space for the first time often focus on one or two of these loan types and then expand later – as the operational implication for each type of loan is complex.   4) Financial ratios Financial ratios are core to commercial credit risk assessment. The main challenge here is to ensure that reliable financials are available from the customer. Small businesses may not be audited and thus the financials may be less trustworthy. Financial ratios can be divided into four categories: Profitability Leverage Coverage Liquidity Profitability can be further divided into margin ratios and return ratios. Lenders are frequently interested in gross profit margins; this is normally explicit on the income statement. The EBIDTA margin and operating profit margins are also used as well as return ratios such as return on assets, return on equity and risk-adjusted-returns. Leverage ratios are useful to lenders as they reflect the portion of the business that is financed by debt. Lower leverage ratios indicate stability. Leverage ratios assessed often incorporate debt-to-asset, debt-to-equity and asset-to-equity. Coverage ratios indicate the coverage that income or assets provide for the servicing of debt or interest expenses. The higher the coverage ratio the better it is for the lender. Coverage ratios are worked out considering the loan/facility that is being applied for. Finally, liquidity ratios indicate the ability for a company to convert its assets into cash. There are a variety of ratios used here. The current ratio is simply the ratio of assets to liabilities. The quick ratio is the ability for the business to pay its current debts off with readily available assets. The higher the liquidity ratios the better. Ratios are used both within credit scorecards as well as within policy rules. You can read more about these ratios here.   5) Size of loan When assessing credit risk for a consumer, the risk of the consumer does not normally change with the change of loan amount or facility (subject to the consumer passing affordability criteria). With business loans, loan amounts can range quite dramatically, and the risk of the applicant is normally tied to the loan amount requested. The loan/facility amount will of course change the ratios (mentioned in the last section) which could affect a positive/negative outcome. The outcome of the loan application is usually directly linked to a loan amount and any marked change to this loan amount would change the risk profile of the application.   6) Risk of industry The risk of an industry in which the SME operates can have a strong deterministic relationship with the entity being able to service the debt. Some lenders use this and those who do not normally identify this as a missing element in their risk assessment process. The identification of industry is always important. If you are in manufacturing, but your clients are the mines, then you are perhaps better identified as operating in mining as opposed to manufacturing. Most lenders who assess industry, will periodically rule out certain industries and perhaps also incorporate industry within their scorecard. Others take a more scientific approach. In the graph below the performance of an industry is tracked for two years and then projected over the next 6 months; this is then compared to the country’s GDP. As the industry appears to track above the projected GDP, a positive outlook is given to this applicant and this may affect them favourably in the credit application.                   7) Risk of Region   The last area of assessment is risk of region. Of the seven, this one is used the least. Here businesses,  either on book or on the bureau, are assessed against their geo-code. Each geo-code is clustered, and the projected outlook is given as positive, static or negative. As with industry this can be used within the assessment process as a policy rule or within a scorecard.   Bringing the seven risk categories together in a risk assessment These seven risk assessment categories are all important in the risk assessment process. How you bring it all together is critical. If you would like to discuss your SME evaluation challenges or find out more about what we offer in credit management software (like AppSmart and DecisionSmart), get in touch with us here.

Collections Resilience post COVID-19 - part 2

Principa Decisions (Pty) L

Collections Resilience post COVID-19

Principa Decisions (Pty) L