The Data Analytics Blog

Our news and views relating to Data Analytics, Big Data, Machine Learning, and the world of Credit.

All Posts

What Type Of Machine Learning Is Right For My Business?

November 28, 2016 at 11:58 AM

Machine Learning is by no means a new thing. Back in 1959, Arthur Samuel’s self-training checkers algorithm had already reached “amateur status” – no mean feat for that period in time. This article is intended to shed some light on the two different types of Machine Learning that one can encounter, which may be useful if you are thinking of entering into this space and are unsure as to which avenue is appropriate for your business.

The two types of Machine Learning to consider

First of all, the machine learning field can be separated into two types. They go by different names, but are widely known as 1) static or batch and 2) dynamic/incremental or self-training. The two approaches differ in some key areas which we will describe in this article.

Machine Learning Type 1: Batch Models

Batch Models are models that are retrained at specific points in time and are generally retrained manually and ‘offline.’ Since the development of the models is manual in nature, they take longer to build.

Some examples of such models are churn or attrition models that identify with some degree of certainty the likelihood of someone leaving you for one of your competitors. The business application will determine how much time is spent on developing the models, as well as the expected life of the model.

For example, within the credit risk space, scorecards for predicting future payments need to perform well relatively far into the future and therefore much time is spent ensuring that the characteristics and associated patterns are stable and trustworthy. Depending on various factors, these models can be created in hours versus months (seriously!).

Machine Learning Type 2: Incremental Models

Incremental models on the other hand are ‘online’ models that retrain themselves with little or no manual intervention. Examples of such models sit within the call centre environment, where the underlying data changes on a regular basis and new patterns emerge and disappear at a more regular rate.

Setting incremental models up optimally involves adjusting how much influence recent data has on the parameters of the retrained model. Environments where trends in the underlying data may change frequently require models that place strong significance on new data, almost forgetting trends that have been observed further in the past.

On the other hand, environments where trends in underlying data stay relatively consistent will see models performing well over time by only slightly adjusting parameters based on new data. A good example where recent data is more relevant than data from 12 months ago is in the call centre space where, for example, a “Right Time to Call” model will feed off dynamically changing dialler data.

It is the setting up of the automated data feedback loop for retraining purposes that makes incremental Machine Learning models more complex, as well as the automation of the monitoring systems that are required to ensure that new models are robust enough before replacing the old ones. However, once you have this system set up, pointing to other areas of the business becomes much easier.

Choosing the right type of Machine Learning for your business

For some businesses, the idea of an automatically (even semi-automatically) retraining system in some areas of the business is appealing – again for example, in call centres to identify which agent should speak to which customer, or which phone number to call at which time of the day. These models can be developed fairly quickly, and automation of the retraining process can be applied with some comfort in the knowledge that an inherent weakness in the model will not lead to a significant cost to the business in the event of an under-performing model.

However, for some other applications with a higher consequence of failure, this approach is not wise. For example, a model that predicts which loan applications should be accepted and which should be declined, or what credit limits should be allocated has a higher consequence of failure. Getting these decisions wrong can cost businesses millions in the long run.

Read more about the different levels of consequences of failure in our blog post Making the move from Predictive Modelling to Machine Learning.

For these applications, greater effort in developing predictive models needs to be applied using stable features and only trusting consistent patterns that will lead to a more stable and trustworthy model. If you have experience in developing these static models, then you have the fundamentals required to move into the more dynamic self-training environment and to apply the benefits of Machine Learning to other areas of your business.

Not sure which type of Machine Learning is right for you?

For 18 years now, we have been developing some pretty effective and high performing propensity models for the financial services industry, covering retailers, insurance and telcos, as well as across diverse applications – such as predicting an individual’s propensity to churn, to become a new customer, to miss a payment, or to take up an additional product.

If you’d like some guidance on bringing the right type of Machine Learning into your business, drop us a line and let us know what your requirement is. We’ll be happy to provide some guidance!

predictive analytics guide 

Image credit: iStock

Robin Davies
Robin Davies
Robin Davies is the Head of Product Development at Principa. Robin’s team packages complex concepts into easy-to-use products that help our clients to lift their business in often unexpected ways.

Latest Posts

[Slideshare] How To Make Your Business Data Work For You

Common barriers to success: Skills shortage: data scientists are in high demand and in low supply. Companies lack the skills to develop advanced data analytics or machine learning applications. Cost: recruiting and building up or training a team, as well as infrastructure costs are immense. Inefficiency and low ROI on: acquisition campaigns; re-activation and retention campaigns; outbound sales calls and debt collection. Resulting in: No or ineffective use of data. High cost to get insights from data. Low returns from campaigns. What’s the alternative? Machine Learning as a Service (MLaaS): removes infrastructure skills and requirements for machine learning, allowing you to begin benefiting from machine learning quickly with little investment. Subscription based pricing, allowing you to benefit using machine learning while minimising your set-up costs and seeing returns sooner. Answers as a Service: Use historic data and machine learning to allow answers to increase in accuracy with time. MLaaS with predictive models pre-developed to answers specific questions: Genius Call Connect: What is the best time and number to call customers? Genius Customer Growth: Which customers are most likely to respond to cross-sell? Genius Re-activation: Which dormant customers are worth re-activating? Genius Customer Retention: Which customers are most likely to churn? Genius Leads: Which contacts are likely to respond to my campaign? Genius Risk Classifier: Which debtors are most likely to pay or roll? Benefits of Genius: Quick and cost-effective ability to leverage machine learning: Minimal set-up time Minimal involvement from IT Subscription based service Looking to make your data work for your business? Read more on Genius to see how it can help your business succeed. 

5 Must-Join Facebook Pages For Data Science, Machine Learning And Artificial Intelligence In 2019

While LinkedIn has traditionally been thought of as the business or work focussed social platform, Facebook has been making headway into gaining market share in the space as well. With company pages and groups, Facebook is catering to every interest and aspiration that people might have – and combining that with their social interactions and news sources. Facebook aims to give users a one-stop-shop experience, and it’s very good at doing it.

Our 2018 Customer Acquisition And Engagement Blog Roundup

Our final roundup this year covers two of our main topics: customer acquisition and customer engagement. We’ve not covered these topics in depth this year, and so decided to combine these two to provide a roundup of the best of both.