The Data Analytics Blog

Our news and views relating to Data Analytics, Big Data, Machine Learning, and the world of Credit.

All Posts

What Type Of Machine Learning Is Right For My Business?

November 28, 2016 at 11:58 AM

Machine Learning is by no means a new thing. Back in 1959, Arthur Samuel’s self-training checkers algorithm had already reached “amateur status” – no mean feat for that period in time. This article is intended to shed some light on the two different types of Machine Learning that one can encounter, which may be useful if you are thinking of entering into this space and are unsure as to which avenue is appropriate for your business.

The two types of Machine Learning to consider

First of all, the machine learning field can be separated into two types. They go by different names, but are widely known as 1) static or batch and 2) dynamic/incremental or self-training. The two approaches differ in some key areas which we will describe in this article.

Machine Learning Type 1: Batch Models

Batch Models are models that are retrained at specific points in time and are generally retrained manually and ‘offline.’ Since the development of the models is manual in nature, they take longer to build.

Some examples of such models are churn or attrition models that identify with some degree of certainty the likelihood of someone leaving you for one of your competitors. The business application will determine how much time is spent on developing the models, as well as the expected life of the model.

For example, within the credit risk space, scorecards for predicting future payments need to perform well relatively far into the future and therefore much time is spent ensuring that the characteristics and associated patterns are stable and trustworthy. Depending on various factors, these models can be created in hours versus months (seriously!).

Machine Learning Type 2: Incremental Models

Incremental models on the other hand are ‘online’ models that retrain themselves with little or no manual intervention. Examples of such models sit within the call centre environment, where the underlying data changes on a regular basis and new patterns emerge and disappear at a more regular rate.

Setting incremental models up optimally involves adjusting how much influence recent data has on the parameters of the retrained model. Environments where trends in the underlying data may change frequently require models that place strong significance on new data, almost forgetting trends that have been observed further in the past.

On the other hand, environments where trends in underlying data stay relatively consistent will see models performing well over time by only slightly adjusting parameters based on new data. A good example where recent data is more relevant than data from 12 months ago is in the call centre space where, for example, a “Right Time to Call” model will feed off dynamically changing dialler data.

It is the setting up of the automated data feedback loop for retraining purposes that makes incremental Machine Learning models more complex, as well as the automation of the monitoring systems that are required to ensure that new models are robust enough before replacing the old ones. However, once you have this system set up, pointing to other areas of the business becomes much easier.

Choosing the right type of Machine Learning for your business

For some businesses, the idea of an automatically (even semi-automatically) retraining system in some areas of the business is appealing – again for example, in call centres to identify which agent should speak to which customer, or which phone number to call at which time of the day. These models can be developed fairly quickly, and automation of the retraining process can be applied with some comfort in the knowledge that an inherent weakness in the model will not lead to a significant cost to the business in the event of an under-performing model.

However, for some other applications with a higher consequence of failure, this approach is not wise. For example, a model that predicts which loan applications should be accepted and which should be declined, or what credit limits should be allocated has a higher consequence of failure. Getting these decisions wrong can cost businesses millions in the long run.

Read more about the different levels of consequences of failure in our blog post Making the move from Predictive Modelling to Machine Learning.

For these applications, greater effort in developing predictive models needs to be applied using stable features and only trusting consistent patterns that will lead to a more stable and trustworthy model. If you have experience in developing these static models, then you have the fundamentals required to move into the more dynamic self-training environment and to apply the benefits of Machine Learning to other areas of your business.

Not sure which type of Machine Learning is right for you?

For 18 years now, we have been developing some pretty effective and high performing propensity models for the financial services industry, covering retailers, insurance and telcos, as well as across diverse applications – such as predicting an individual’s propensity to churn, to become a new customer, to miss a payment, or to take up an additional product.

If you’d like some guidance on bringing the right type of Machine Learning into your business, drop us a line and let us know what your requirement is. We’ll be happy to provide some guidance!

Using machine learning in business - download guide 

Image credit: iStock

Robin Davies
Robin Davies
Robin Davies was the Head of Product Development at Principa for many years during which Robin’s team packaged complex concepts into easy-to-use products that help our clients to lift their business in often unexpected ways. Robin is currently the Head of Machine Learning at a prestigious firm in the UK.

Latest Posts

The 7 types of credit risk in SME lending

  It is common knowledge in the industry that the credit risk assessment of a consumer applying for credit is far less complex than that of a business that is applying for credit. Why is this the case? Simply put, consumers are usually very similar in their requirements and risks (homogenous) whilst businesses have far more varying risk elements (heterogenous). In this blog we will look at all the different risk elements within a business (here SME) credit application. These are: Risk of proprietors Risk of business Reason for loan Financial ratios Size of loan Risk industry Risk of region Before we delve into this list, it is worth noting that all of these factors need to be deployable as assessment tools within your originations system so it is key that you ensure your system can manage them. If you are on the look out for a loans origination system, then look no further than Principa’s AppSmart. If you are looking for a decision engine to manage your scorecards, policy rules and terms of business then take a look at our DecisionSmart business rules engine. AppSmart and DecisionSmart are part of Principa’s FinSmart Universe allowing for effective credit management across the customer life-cycle.  The different risk elements within a business credit application 1) Risk of proprietors For smaller organisations the risk of the business is inextricably linked to the financial well-being of the proprietors. How small is small? The rule of thumb is companies with up to two to three proprietors should have their proprietors assessed for risk too. This fits in with the SME segment. What data should be looked at? Generally in countries with mature credit bureaux, credit data is looked at including the score (there is normally a score cut-off) and then negative information such as the existence of judgements or defaults; these are typically used within policy rules. Those businesses with proprietors with excessive numbers of “negatives” may be disqualified from the loan application. Some credit bureaux offer a score of an individual based on the performance of all the businesses with which they are associated. This can also be useful in the credit risk assessment process. Another innovation being adopted internationally is the use of psychometrics in credit evaluation of the proprietors. To find out more about adopting credit scoring, read our blog on how to adopt credit scoring.   2) Risk of business The risk of the business should be managed through both scores and policy rules. Lenders will look at information such as the age of company, the experience of directors and the size of company etc. within a score. Alternatively, many lenders utilise the business score offered by credit bureaux. These scores are typically not as strong as consumer scores as the underlying data is limited and sometimes problematic. For example, large successful organisations may have judgements registered against their name which, unlike for consumers, is not necessarily a direct indication of the inability to service debt.   3) Reason for loan The reason for a loan is used more widely in business lending as opposed to unsecured consumer lending. Venture capital, working capital, invoice discounting and bridging finance are just some of many types of loan/facilities available and lenders need to equip themselves with the ability to manage each of these customer types whether it is within originations or collections. Prudent lenders venturing into the SME space for the first time often focus on one or two of these loan types and then expand later – as the operational implication for each type of loan is complex. 4) Financial ratios Financial ratios are core to commercial credit risk assessment. The main challenge here is to ensure that reliable financials are available from the customer. Small businesses may not be audited and thus the financials may be less trustworthy.   Financial ratios can be divided into four categories: Profitability Leverage Coverage Liquidity Profitability can be further divided into margin ratios and return ratios. Lenders are frequently interested in gross profit margins; this is normally explicit on the income statement. The EBIDTA margin and operating profit margins are also used as well as return ratios such as return on assets, return on equity and risk-adjusted-returns. Leverage ratios are useful to lenders as they reflect the portion of the business that is financed by debt. Lower leverage ratios indicate stability. Leverage ratios assessed often incorporate debt-to-asset, debt-to-equity and asset-to-equity. Coverage ratios indicate the coverage that income or assets provide for the servicing of debt or interest expenses. The higher the coverage ratio the better it is for the lender. Coverage ratios are worked out considering the loan/facility that is being applied for. Finally, liquidity ratios indicate the ability for a company to convert its assets into cash. There are a variety of ratios used here. The current ratio is simply the ratio of assets to liabilities. The quick ratio is the ability for the business to pay its current debts off with readily available assets. The higher the liquidity ratios the better. Ratios are used both within credit scorecards as well as within policy rules. You can read more about these ratios here. 5) Size of loan When assessing credit risk for a consumer, the risk of the consumer does not normally change with the change of loan amount or facility (subject to the consumer passing affordability criteria). With business loans, loan amounts can range quite dramatically, and the risk of the applicant is normally tied to the loan amount requested. The loan/facility amount will of course change the ratios (mentioned in the last section) which could affect a positive/negative outcome. The outcome of the loan application is usually directly linked to a loan amount and any marked change to this loan amount would change the risk profile of the application.   6) Risk of industry The risk of an industry in which the SME operates can have a strong deterministic relationship with the entity being able to service the debt. Some lenders use this and those who do not normally identify this as a missing element in their risk assessment process. The identification of industry is always important. If you are in manufacturing, but your clients are the mines, then you are perhaps better identified as operating in mining as opposed to manufacturing. Most lenders who assess industry, will periodically rule out certain industries and perhaps also incorporate industry within their scorecard. Others take a more scientific approach. In the graph below the performance of an industry is tracked for two years and then projected over the next 6 months; this is then compared to the country’s GDP. As the industry appears to track above the projected GDP, a positive outlook is given to this applicant and this may affect them favourably in the credit application.                   7) Risk of Region   The last area of assessment is risk of region. Of the seven, this one is used the least. Here businesses,  either on book or on the bureau, are assessed against their geo-code. Each geo-code is clustered, and the projected outlook is given as positive, static or negative. As with industry this can be used within the assessment process as a policy rule or within a scorecard.   Bringing the seven risk categories together in a risk assessment These seven risk assessment categories are all important in the risk assessment process. How you bring it all together is critical. If you would like to discuss your SME evaluation challenges or find out more about what we offer in credit management software (like AppSmart and DecisionSmart), get in touch with us here.

Collections Resilience post COVID-19 - part 2

Principa Decisions (Pty) L

Collections Resilience post COVID-19

Principa Decisions (Pty) L